On Third-order Linear Difference Equations Involving Quasi-differences
نویسنده
چکیده
had been investigated. As it is noted here, these equations are not adjoint equations and are referred to as quasi-adjoint equations. Equation (E) is a special case of linear nth-order difference equations with quasi-differences. Such equations have been widely studied in the literature, see, for example, [6, 11] and the references therein. The natural question which arises is to find the adjoint equation to (E) and to examine the connection between solutions of (E) and its adjoint one.
منابع مشابه
Applying Multiquadric Quasi-Interpolation to Solve KdV Equation
Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations. Based on the good performance, Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation, which is generalized from the LD operator, and used it to solve hyperbolic conservation laws and Burgers’...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملBasic results on distributed order fractional hybrid differential equations with linear perturbations
In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...
متن کاملHigher Order Accuracy Finite Difference Algorithms for Quasi - Linear , Conservation Law Hyperbolic Systems
An explicit algorithm that yields finite difference schemes of any desired order of accuracy for solving quasi-linear hyperbolic systems of partial differential equations in several space dimensions is presented. These schemes are shown to be stable under certain conditions. The stability conditions in the one-dimensional case are derived for any order of accuracy. Analytic stability proofs for...
متن کاملA distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations
The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative of Caputo type with order and scale index . We es...
متن کامل